
Phorum Developer Reference Manual

Maurice Makaay, Brian Moon, and Thomas Seifert

January 8, 2008

Contents

1 Templates 5
1.1 Introduction . 5
1.2 Template structure . 5
1.3 How to start your own template . 7
1.4 The Phorum template language . 8

1.4.1 Introduction . 8
1.4.2 General syntax . 8
1.4.3 Data types . 9

1.4.3.1 Integers . 9
1.4.3.2 Strings . 10
1.4.3.3 PHP constants . 10
1.4.3.4 Template variables 11

1.4.4 Statements . 12
1.4.4.1 Display a variable 12
1.4.4.2 In line comments 13
1.4.4.3 DEFINE . 13
1.4.4.4 VAR . 13
1.4.4.5 IF .. ELSEIF .. ELSE 14
1.4.4.6 LOOP . 15
1.4.4.7 INCLUDE . 16
1.4.4.8 HOOK . 17

1.4.5 Need the power of PHP? . 17

2 Modules 19
2.1 Introduction . 19
2.2 Terminology . 19

2.2.1 Modules . 19
2.2.2 Hacks . 20
2.2.3 Hooks . 20
2.2.4 Hook functions . 20

2.3 Writing your own modules . 21
2.3.1 Introduction . 21
2.3.2 Module information . 21
2.3.3 Module file structure . 23

1

2.3.3.1 Introduction . 23
2.3.3.2 Single file modules 23
2.3.3.3 Multiple file modules 25

2.3.4 Supporting multiple languages 27
2.3.5 Module data storage . 28

2.3.5.1 Introduction . 28
2.3.5.2 Storing data for messages 28

2.3.5.2.1 From hooks that get an editable message
array as their argument 29

2.3.5.2.2 From other hooks 29

3 Module hooks 31
3.1 Introduction . 31
3.2 Templating . 31

3.2.1 css_register . 31
3.2.2 javascript_register . 33

3.3 Control center . 34
3.3.1 cc_panel . 34

3.4 Message search . 34
3.4.1 search_redirect . 34
3.4.2 search_output . 35

3.5 File storage . 35
3.5.1 file_purge_stale . 35

3.6 User data handling . 36
3.6.1 user_save . 36
3.6.2 user_register . 36
3.6.3 user_get . 36
3.6.4 user_list . 37
3.6.5 user_delete . 37

3.7 User authentication and session handling 37
3.7.1 user_authenticate . 37

2

List of Tables

2.1 Keys and values in module information 22

3

Introduction

This is the Phorum developer reference manual for Phorum version 5.2.x and up. It is
not intended for use with older versions of Phorum, although a lot of information will
apply.

Please keep in mind that this manual is neither complete, nor final. If you have
any remarks about it, please let us know in the development forum on our website.
With your contribution, we hope to make this manual a useful tool for Phorum users in
understanding and working with our software.

The Phorum development team
Phorum.org

4

http://www.phorum.org/

Chapter 1

Templates

1.1 Introduction
Phorum uses a template system for separating application code from presentation code.
Application code contains all the logic that is needed for running Phorum. This is PHP
code which is maintained by programmers. Presentation code is used to translate the
data that is generated by the application code into a HTML page that can be viewed by
the end user. This Presentation code can be maintained by HTML designers.

The big advantages of this type of system are that HTML designers will not be
bothered with complicated PHP code and that it is easy to create multiple presentation
styles for Phorum.

Although there is no application logic in the templates, it is still possible to put pre-
sentation logic in there. Presentation logic is only used for things like making decisions
on what to show and how to show it and for processing data that has been generated
by the application code. For writing presentation logic, a very simple custom program-
ming language is available (more on that will follow when we talk about the Section
1.4).

1.2 Template structure
A template set is a collection of files that together form a single template. All tem-
plate sets are stored in their own subdirectory under the directory {phorumdir}/
templates. If we asume that we have three templates default, template1 and
template2, then the directory structure for storing these templates would look like
this:

{phorum dir}
|
+-- templates

|
+-- default

5

|
+-- template1
|
+-- template2

Inside these template subdirectories, the files for the templates are stored. There,
the the following files can be found:

info.php This is a PHP file that is used for describing some properties of the template.
This file can define the following variables:

• $name
Mandatory variable. This variable hold the name that you want to give to
the template. This is the name that will be displayed in template selection
boxes. The name of the directory for the template will only be used by
Phorum internally.

• $version
Mandatory variable. This variable holds the version number for your tem-
plate. It’s used so you can track what version of the template is installed
for Phorum. You can use any type of version numbering you like. If you
do not know what to use, then simply give your first version of the template
version 1, the second number 2, and so on.

• $template_hide
Optional variable. If set to a true value, the template will be hidden from
user select boxes where the end user can choose the template that he wants
to use.

Example 1.2.1 Template information file: $info.php

<?php
// Prevent loading from outside the Phorum application.
if (!defined("PHORUM")) return;

// Template information.
$name = "A brilliant template";
$version = "1.2-beta";
$template_hide = 1;
?>

.tpl and .php files These are the files that hold the actual template code. When the
Phorum application wants to display a template, it is always referenced by its
basename (i.e. without any file extension like .php or .tpl after it). If the file
<templatebasename>.php exists in the template directory, then Phorum
will use that file as the template input. Else, <templatebasename>.tpl
will be used.

6

An example: if Phorum wants to display the "header" template, it will first search
for header.php in the template directory. If that file does not exist, it will use
header.tpl instead.

PHP files (*.php) contain pure PHP/HTML code. In Phorum template files
(.tpl) you can additionally make use of the Section 1.4.

Using this system, template authors can completely revert to using pure PHP-
code for templates, without using the template language at all. The Phorum
development team does not recommend doing this. To keep templates simple,
always try to stick to the combination of HTML code and the template language.

Other files and subdirectories In most cases these will be image files which are stored
in a subdirectory images of the template. But template authors are free to add
whatever subdirectories and files they like to the template directory (e.g. Flash
based page components, CSS stylesheets, audio files, JavaScript libraries, etc.).

Combining all this, the full tree for a typical template would look like this:

{phorum dir}
|
+-- templates

|
+-- templatename

|
+-- info.php
|
+-- *.tpl
|
+-- images

|
+-- *.gif, *.jpg, *.png

1.3 How to start your own template
Although you can start writing a new template totally from scratch, it is of course much
easier to take an existing template and modify that one for your needs. Here are the
steps that you have to take for accomplishing this:

• Copy the default template
Take the default template directory from {phorumdir}/templates/default
and copy it over to another directory, for example {phorumdir}/templates/
mytpl.

• Edit info.php for your template
Edit {phorumdir}/templates/mytpl/info.php. In this file you have

7

to edit at least the $name variable, e.g. to $name = "My very own tem-
plate";

You can hide the template from the user template selection boxes by setting $t-
emplate_hide = 1. If you do this, you can only select this template through
the admin interface.

• Configure Phorum to use your template
Open Phorum’s admin page {phorumurl}/admin.php and go to "General
Settings". There you will find the option "Default Template". Set that option to
your own template. You also have to configure the template in the settings of
each single forum where you want the template to appear.

That is it! You are now using your own template. From here on, you can start
tweaking the template files in your {phorumdir}/templates/mytpl directory.

Phorum uses its own template language to allow for dynamic templates without
using PHP. More information on this can be found in the section about the Section 1.4.

1.4 The Phorum template language

1.4.1 Introduction
The largest part of the code that can be found in Phorum template files (*.tpl) is
plain HTML. To be able to use and display the dynamic data that has been generated
by Phorum (like message information, lists of private messages and search results),
Phorum uses a custom template language which can be used to mix the HTML code
with dynamic data. The template language is a very simple programming language
with only a few statements to use. This section will describe the template language in
detail.

1.4.2 General syntax
Templates are built using HTML code. Embedded in this HTML code, there can be
template language statements. All template statements in the templates are surrounded
by "{" and "}" characters. Here’s a simple example of what a template could look like:

8

Example 1.4.1 Template example

<html>
<head>

<title>{HTML_TITLE}</title>
</head>
<body>

Your username is: {USER->username}

{IF USER->username "george"}
Hello, George!

{/IF}
</body>

</html>

1.4.3 Data types
The template language supports four data types to use in statements:

• Section 1.4.3.1

• Section 1.4.3.2

• Section 1.4.3.3

• Section 1.4.3.4

1.4.3.1 Integers

Integers are formatted as a sequence of numbers.

Example 1.4.2 Integer values

403
90
4231

Here is an example of template code in which integers are used:

Example 1.4.3 Code using integer values

{VAR INTEGERVAR 1000}
The variable INTEGERVAR is {INTEGERVAR}.

{IF INTEGERVAR 333}
The INTEGERVAR has the value 333.

{/IF}

9

1.4.3.2 Strings

Strings are sequences of characters within quotes (both double and single quotes can
be used).

Example 1.4.4 String values

"this is a string value"
"My 1st string!"
’Single quoted string is possible too’

Now if you need the quote which you used to surround the string with inside the
string itself, you must escape it using \" or \’. This is consistent with the way that PHP
strings are escaped.

Example 1.4.5 Escaped quotes in string values

"this is a \"string\" value"
’Single quoted \’string\’ value’
"You can use both \" and ’ for strings!"

Here are some examples of template code in which strings are used:

Example 1.4.6 Code using string values

{VAR QUESTION "Do you know what \"fubar\" means?"}
{VAR CORRECT "That was the right answer!"}
{VAR INCORRECT "No.. you were wrong!"}

{IF ANSWER ’Fucked Up Beyond All Recognition’}
{CORRECT}

{ELSE}
{INCORRECT}

{/IF}

1.4.3.3 PHP constants

It is possible to define constants within PHP. This is done using the define() PHP state-
ment. Here’s an example:

<?php define("MY_CONSTANT", "The constant value") ?>

You can reference PHP constants from the template language by using its name, with-
out any quotes. So the constant that was defined in the code above, can be used like
this in a template:

10

Example 1.4.7 Code using a PHP constant definition

The value of my PHP constant is {MY_CONSTANT}

Apart from defining your own PHP constants, you can also use constants that are
already defined by PHP. Two useful constants to use are true (value = 1) and false
(value = 0). Using these, you can write template code like this:

Example 1.4.8 Code using built-in PHP constants

{VAR SOME_OPTION true}

{IF SOME_OPTION true}
The option SOME_OPTION is true.

{/IF}

1.4.3.4 Template variables

About the most important data type for the template language is the template variable.
Template variables are used by Phorum to store dynamic data, which can be used by
your templates. You can also use the variables for storing dynamic data of your own
from the templates. Template variables can contain both simple values and complex
arrays of data.

You can reference a template variable by using the variable’s name, without any
quotes. This is the same type of notation as the one that is used for referencing PHP
constants (see Section 1.4.3.3). If there are both a constant and a variable with the same
name, the value of the contstant will take precedence over the template variable.

Example 1.4.9 Template variables

NAME
HTML_TITLE
MESSAGES

In case the variable represents an array, you can reference the array elements by
using the following pointer notation:

Example 1.4.10 Referencing elements in a template variable array

ARRAYVARIABLE->SIMPLE_ELEMENT
ARRAYVARIABLE->ARRAY_ELEMENT->SIMPLE_ELEMENT

Within a template, variables are used like this:

11

Example 1.4.11 Code using template variables

{VAR MY_VAR "Assign a value to a variable from the template"}

You username is: {USER->username}

The current forum’s name is: {NAME}

{LOOP MESSAGES}
Subject: {MESSAGES->subject}

{/LOOP}

What variables are available for what template pages is fully determined by Pho-
rum.

1.4.4 Statements
The template language has a number of statements that can be used for executing tem-
plating actions and decisions.

• Section 1.4.4.1

• Section 1.4.4.2

• Section 1.4.4.3

• Section 1.4.4.4

• Section 1.4.4.5

• Section 1.4.4.6

• Section 1.4.4.7

• Section 1.4.4.8

1.4.4.1 Display a variable

Function This is both the most simple and the most important template statement there
is. Using this statement, you can display the contents of a value.

Syntax {<VALUE>}

Example 1.4.12 Display a variable

The name of the current forum is: {NAME}

Example code

12

1.4.4.2 In line comments

Function Sometimes, it’s useful to explain what you are doing when writing compli-
cated templating code. In that case you can use comments to document what you
are doing. You can also use comments to add general info to the template (like
in the example below).

Syntax {! <COMMENT TEXT>}

The <COMMENT TEXT> can contain any characters you like, except for "}".

Example 1.4.13 Add in line comments

{! This template was created by John Doe and his lovely wife ←↩
Jane }

Example code

1.4.4.3 DEFINE

Function Using this statement, you can set definitions that can be used by the Pho-
rum software. These are mainly used for doing settings from the template file
"settings.tpl" to tweak Phorum’s internal behaviour.

Definitions that have been set using this statement are not available from other
template statements.

Syntax {DEFINE <PHORUM DEFINITION> <VALUE>}

What you can use for <PHORUM DEFINITION> is fully determined by the
Phorum software (and possibly modules). The <VALUE> can be any of the data
types that are supported by the template language (see Section 1.4.3).

Example 1.4.14 DEFINE statement usage

{DEFINE list_pages_shown 5}

Example code

1.4.4.4 VAR

Function Using this statement, you can set variable definitions that can be used by the
Phorum template language.

13

Syntax {VAR <TEMPLATE VARIABLE> <VALUE>}

<TEMPLATE VARIABLE> can be an existing or a new variable name (see Sec-
tion 1.4.3.4). The <VALUE> can be any of the data types that are supported by
the template language (see Section 1.4.3).

Example 1.4.15 VAR statement usage

{VAR MY_VAR "This is my first variable!"}
{VAR MY_VAR OTHER_VAR}
{VAR MY_VAR 1234}

{VAR IS_COOL true}
{IF IS_COOL}
Yes, this is cool

{/IF}

Example code

1.4.4.5 IF .. ELSEIF .. ELSE ..

Function Using these statements, you can control if certain blocks of code in your
template are processed or not, based on a given <CONDITION>. This can for
example be useful if you want certain parts of the page to be only visible for
registered users.

Syntax {IF <CONDITION>}
.. conditional code ..

[{ELSEIF <CONDITION>}
.. conditional code ..]

[{ELSE}
.. conditional code ..]

{/IF}

<CONDITION> Syntax: [NOT] <TEMPLATE VARIABLE> [<VALUE>]

The <TEMPLATE VARIABLE> in a <CONDITION> has to be an existing vari-
able name. The <VALUE> can be any of the data types that are supported by the
template language (see Section 1.4.3).

If a <VALUE> is used, the <TEMPLATE VARIABLE> will be compared to the
<VALUE>. If the <VALUE> is omitted, then the condition will check whether
the <TEMPLATE VARIABLE> is set and not empty.

A condition can be negated by prepending the keyword NOT to it.

Multiple conditions can be chained using the keywords AND or OR.

14

Example 1.4.16 IF .. ELSEIF .. ELSE .. statement usage

{IF NOT LOGGEDIN}
You are currently not logged in.

{ELSEIF USER->username "John"}
Hey, it’s good to see you again, mr. John!

{ELSE}
Welcome, {USER->username}!

{/IF}

{IF ADMINISTRATOR true OR USER->username "John"}
You are either an administrator or John.

{/IF}

{IF VARIABLE1 VARIABLE2}
Variable 1 and 2 have the same value.

{/IF}

Example code

1.4.4.6 LOOP

Function The LOOP statement is used for looping through the elements of array based
template variables (for example arrays of forums, messages and users).

Syntax {LOOP <ARRAY VARIABLE>}
{<ARRAY VARIABLE>}

{/LOOP <ARRAY VARIABLE>}

The <ARRAY VARIABLE> has to be the name of an existing template variable
containing an array.

Within the LOOP, the active array element is assigned to a variable that has the
same name as the <ARRAY VARIABLE> that you are looping over. In our ex-
ample below, we are looping over USERS, which is an array of user data records.
Within the loop, USERS is no long the array of users itself, but the user data
record for a single user instead.

Example 1.4.17 LOOP statement usage

{LOOP USERS}
{USERS->username}

{/LOOP}

15

Example code

1.4.4.7 INCLUDE

Function Include another template in the template.

Syntax {INCLUDE [ONCE] <INCLUDE PAGE>}

The <INCLUDE PAGE> can be any of the data types that are supported by the
template language (see Section 1.4.3).

By specifiying the keyword ONCE before the name of template to include, you
can make sure that that template is only included once per page.

Example 1.4.18 INCLUDE statement usage

{INCLUDE "paging"}

{VAR include_page "cool_include_page"}
{INCLUDE include_page}

{INCLUDE ONCE "css"}

Example code

Limitiation It is not possible to use a dynamic INCLUDE statement (one where the <-
INCLUDE PAGE> is set through a template variable) within a LOOP statement,
in case the included template needs to have access to the active LOOP element.
There is no problem if you use a static INCLUDE statement (one where the
<INCLUDE PAGE> is set through a string value).

If you really need this kind of functionality though, you can work around this
limitation by assigning the active LOOP element to a new template variable,
prior to including the dynamic <INCLUDE PAGE>. Example:

{! include_page holds the dynamic page to include }
{VAR include_page "some_page"}

{LOOP loop_variable}
{! Makes loop_variable available as temp_variable in ←↩

the include }
{VAR temp_variable loop_variable}
{INCLUDE include_page}

{/LOOP}

This way you can access the active LOOP element from the included template
through temp_variable. If you would access loop_variable from there,
you’d see that it does not contain the active LOOP element, but the full array that
you are looping over instead.

16

1.4.4.8 HOOK

Function The HOOK statement can be used to run a module hook from a template.
By using hooks in the templates, you have an easy way for modules to add data
to a page, without having to change the templates too much. Because these
hooks need an activated module that acts upon them, creating HOOK statements
is certainly for advanced users only.

Syntax {HOOK <HOOK NAME> [<ARG1> <ARG2> .. <ARGn>]}

Both the <HOOK NAME> and the arguments that are used in the HOOK state-
ment can be any of the data types that are supported by the template language
(see Section 1.4.3).

How hook functions are called Depending on the number or arguments that are used
in the HOOK statement, different type of calls are made to the hook function for
the given <HOOK NAME>.

• No arguments:
the hook function is called without any arguments at all:
hook_function()

• One argument:
The single argument is used directly for calling the hook function:
hook_function($ARG1)

• Multiple arguments:
The arguments are wrapped in an array, which is then used for calling the
hook function:
hook_function(array($ARG1,$ARG2,..$ARGn))

Example 1.4.19 HOOK statement usage

{HOOK "template_hook"}

{LOOP MESSAGES}
{HOOK "show_message" MESSAGES}

{/LOOP}

{VAR HOOKNAME "my_magic_hook"}
{HOOK HOOKNAME "my argument"}

Example code

1.4.5 Need the power of PHP?
Template writers for whom the template language is too limited can break into PHP
at any point in the templates, using the regular <?php ... ?> syntax. It is not
mandatory at all to use the Phorum template language for your templates.

17

The biggest drawback here, is that knowledge of the Phorum internals is required
if you want to work with the data that has been generated by Phorum.

Most template writers will normally only be using HTML and the Phorum template
language.

To prevent confusion between PHP code blocks and template statements (which are
both surrounded by "{" and "}" characters), always use a whitespace after an opening
"{" character in your PHP code. So instead of writing:

<?php if ($this = true) {print "It’s true";} ?>

you now have to write:

<?php if ($this = true) { print "It’s true"; } ?>

This way you can mix PHP code with template code without running into problems.

18

Chapter 2

Modules

2.1 Introduction
This section describes Phorum’s module system. It is targeted at developers who want
to do customization and extend the functionality of Phorum. Modules are the preferred
way to archieve this.

For much of this document, we will be talking about an example module "foo". Of
course you will not name your module "foo", but something much more appropriate. If
you’re not familiar with the terms "foo" and "bar", you can visit Wikipedia to see why
we chose them.

Be sure to read at least the CAUTIONS AND SECURITY ISSUES section, before
making your own modules.

2.2 Terminology

2.2.1 Modules
Modules are self contained pieces of software, that can be added to Phorum to change
or extend its functionality. Modules can do this without having to change anything in
the standard Phorum distribution files or database structure.

The big advantage of modules this is that upgrading the Phorum code is easy (no
file changes to redo after upgrading) and that modules can be easily uninstalled when
needed.

Installing a module means: drop the code in the Phorum mods directory, go to the
admin "Modules" page, enable the module and enjoy! One additional thing that might
be needed, is editing one or more template files to display data that is generated by the
module.

19

TODO: Link to section once it's ready

http://en.wikipedia.org/wiki/Metasyntactic_variable

2.2.2 Hacks
The moment it is neccessary to make changes to the standard Phorum distribution files
or database structure to implement some kind of functionality, we are talking about a
hack (even if the changes that have to be made are accompanied by a drop in module).

Although there is nothing wrong with writing hacks, the Phorum team wants to
urge you to try if you can write a module before resorting to a hack. Especially if you
are going to publish your changes to the public. Modules are the preferred way of mod-
ifying Phorum functionality, because that will make both upgrading your distribution
and having your modification adopted by others easier.

2.2.3 Hooks
The Phorum core and Phorum modules are interconnected through hooks. Hooks are
points in the application where Phorum stops and runs its data through the modules
that are configured to handle the hook. The modules can act upon and change this data.

The following image visualizes what happens when Phorum reaches a hook point
in the application, for which two modules ("foo" and "bar") have been configured.

Phorum
Application

(1) (1) Phorum is running.
| (2) Phorum reaches the
| hook named "some_hook".
v Phorum (3) Phorum sends data to

some_hook >----- data ------+ the module system.
(2) (3) | (4) The module "foo" is run.

v (5) The module "bar" is run.
(4) module "foo" (6) The Phorum data (which

| might be modified by the
v modules) is sent back

(5) module "bar" to Phorum.
| (7) Phorum continues running

Phorum Modified | with the modified data.
Application <---- data ------+

(7) (6)
|
|
v

2.2.4 Hook functions
A module contains PHP functions that act as hook functions. Hook functions will re-
ceive some data from Phorum through their arguments and have to return the (possibly
modified) data, which will then go either back to Phorum or to the input of another
module which also handles the same hook (see Section 2.2.3). Based on this, the most

20

basic (and useless) hook function you could write would look somewhat like this (see
XXX for an explanation of the naming scheme that was used for the function):

function phorum_mod_foo_some_hook ($data) {
return $data;

}

The exact nature of the data that is sent to the hook functions depends solely on the
hook that is run. See Chapter 3 for a description of all supported hooks, including a
specification of the type of data that is sent.

2.3 Writing your own modules

2.3.1 Introduction
This section will explain to you how to roll your own Phorum modules. We will start
out by explaining some of the Section 2.2 that relates to modules. After that, we will
explain a very important part modules: the Section 2.3.2. This contains information
for both Phorum (what hooks to run in what order, version dependancies) and module
users (title, description and other interesting facts). From there on we will walk you
through all the possibilities that modules have.

2.3.2 Module information
Module information is the glue between your module and Phorum. It provides in-
formation to Phorum about your module. Before we explain how to add this module
information to your module, we will first explain what data can be put in there and how
that data is formatted.

Module information is formatted using lines of plain text. Each line contains a
piece of information about the module. The general format for each of the lines in the
module information is:

<key>: <value>

Empty lines are allowed between these key/value pairs. Below, you can find a list of
the keys and values that can be used in the module information.

It is allowed to use multiple hook lines in your module information, so your module
can act upon multiple hooks. When doing this, it is also allowed to use the same
hook function for handling different hooks in your module (asuming the hooks are
compatible).

Here is an example of what the module information for our example module "foo"
might look like:

21

<key> <value>

title

This is the title for the module that is
displayed in the "Modules" page of
the admin interface.
Example:
title: Foo

desc

This is the description that is
displayed along with the title in the
admin interface, to give a little more
information about the module. Using
HTML in the <value> part is allowed.
Example:
desc: This is a very
cool module to do stuff.

hook

This describes which Section 2.2.4 are
called for which Phorum hooks. The
value consists of two fields, separated
by a pipe "|" symbol. The first field
contains the name of the hook that this
module is hooking into. The second
field contains the name of the hook
function that will be called for the
hook.
Example:
hook: some_hook|phorum_-
mod_foo_some_hook

priority

This can be used for changing
priorities and dependancies for
modules and hooks. Possible values
are (in order in which they are
processed):

• run module
before|after *

• run module
before|after <other
module name>

• run hook <hook name>
before|after *

• run hook <hook name>
before|after <other
module name>

Examples:

Run this module before all other
modules:
priority: run module
before *
Run this module before the bbcode
module.
priority: run module
before bbcode
Run the "format" hook for this module
before the "format" hook of the
smileys module.
priority: run hook
format before smileys
Run the "after_header" hook for this
module after all other "after_header"
hooks.
priority: run hook
after_header after *
The main difference between "run
module" and "run hook" is that "run
module" will affect the priority for
each hook of the module and that "run
hook" is used to specifically change
the priority of a single hook. So to run
all hooks for a module as early as
possible, but run the "foo" hook as late
as possible and the "bar" hook before
the smileys mod, one could use the
following priority lines:
priority: run module

before *
priority: run hook foo
after *
priority: run hook bar
before smileys

require_version

This describes which phorum version
is required to use this module.
Modules with a requirement above the
current phorum version are
automatically disabled when going to
the modules page. This feature was
added in Phorum 5.2.
Example:
require_version: 5.2.2

author
url
version
release_date

These fields are all informational. The
information from these fields will be
shown on the Modules admin page.
You are allowed to omit these fields
from the module information, but we
advice you to fill them to provide as
much useful info to the users of your
module.
The fields are free form. The "url"
field should contain a URL to a page
where more information about the
module can be found. This can for
example be a dedicated page about
your module or a discussion page in
the phorum.org support forums.
Example:
author: John Doe, Phorum
hacker
url: http://example.com-
/phorum/mod_foo/
version: 0.9.1-alpha
release_date: May 17th,
2007

category

The category field is used for
categorizing the module. You can
place your module inside one or more
categories by adding one or more
category lines to the module
information. The category is used for
automatically generating a categorized
list of available modules on the
phorum.org web site.
For consistency and for preventing
wild growth of categories, we use a
fixed set of categories from which you
can choose. Please select your
category / categories carefully and do
not put your module in too many
categories. Available categories to
choose from are:

• admin
Modules that are useful for
performing administrative tasks
and for handling advanced
Phorum configuration.

• bbcode
Modules that implement extra
BBcode tags.

• embed_content
Modules for embedding content
(e.g. images, audio, video,
flash, etc.) in message bodies.
These modules implement
viewers that are shown inside
the message bodies when
reading the message and which
take away the need to launch
some external viewer to open
attachments and/or linked files.

• phorum3conversion
Modules that can help sites to
convert from the old Phorum 3
system to Phorum 5.

• email
Modules that extend or enhance
the email system.

• integration
Modules that can be used for
integrating Phorum with other
systems.

• user_management
These modules deal with user
registration, logging in and out,
login status and user
management tasks.

• moderator
Modules that extend or enhance
the moderation system.

• posting
Modules that extend or enhance
posting and/or editing
messages.

• search
Modules that provide search
features or that replace the full
message search backend.

• seo
Modules that apply search
engine optimization measures to
Phorum.

• spam
Modules that help protecting
Phorum against spam.

• user_features
Modules that give the users new
options and enhance their
experience.

• viewlayout
Modules that add information to
or alter the view / layout of
Phorum pages.

• uncategorized
Modules that do not have a
category assigned. This one is
mainly mentioned for
completeness. In the online
module list, this category will
be assigned to modules that
don’t have a category set in
their info.txt.

Example:
category: user_features
category: posting

Table 2.1: Keys and values in module information

22

Example 2.3.1 Module information

title: Foo
desc: This is the Foo module for Phorum. Nothing exciting...
version: 1.0.2
release_date: Jan 1st, 2008
url: http://www.phorum.org
author: John Doe <johndoe@example.com>
require_version: 5.2.2
category: user_features

hook: some_hook|phorum_mod_foo_some_hook
hook: some_other_hook|phorum_mod_foo_some_other_hook
hook: yet_another_hook|phorum_mod_foo_some_other_hook

priority: run some_hook before some_other_module

What this module info does, is telling Phorum that when it gets to "some_other_hook",
it will have to call the function phorum_mod_foo_some_other_hook() in your
module. It also tells that for "yet_another_hook" the same function has to be called.
It will also take care that the hook "some_hook" is run before the same hook in the
module "some_other_module".

2.3.3 Module file structure
2.3.3.1 Introduction

This section describes the file structure of Phorum modules. This structure contains
things like the Section 2.3.2, Section 2.2.4 and possibly additional stuff like templates,
translations, modules settings, images, scripts, classes, etc.

If your module only needs module information and hook functions to function, it
is possible to use the Section 2.3.3.2. If you need more than that, then use the Section
2.3.3.3.

2.3.3.2 Single file modules

Single file modules are useful in case case no additional files have to be distributed
with your module. Because the module consists of only one single file, it is very easy
to distribute. Beware though that the moment that you want to support for example
a settings screen, multiple languages or custom images, you will have to switch to
the multiple file module structure. Switching does mean some extra work for your
users. So only use this format for modules for which you are sure that you do not need
additional files in the future.

Single file modules consist of one single PHP file. The name of this file is not
restricted. We advice you to use mod_<modulename>.php though for clarity and
consitency with other module (e.g. mod_foo.php). This file contains both the mod-

23

ule information and the hook function definitions. For storing the module informaton,
a special PHP comment is used. This comment must look like the following:

/* phorum module info
<module information lines go here>

*/

Using the example module info from Example 2.3.1, the complete single file module
would look like this (see XXX why we use the check on PHORUM at the start of this
file):

Example 2.3.2 Single file module

{phorum dir}/mods/mod_foo.php
<?php

if(!defined("PHORUM")) return;

/* phorum module info
title: Foo
desc: This is the Foo module for Phorum. Nothing exciting...
version: 1.0.2
release_date: Jan 1st, 2008
url: http://www.phorum.org
author: John Doe <johndoe@example.com>
require_version: 5.2.2
category: user_features

hook: some_hook|phorum_mod_foo_some_hook
hook: some_other_hook|phorum_mod_foo_some_other_hook
hook: yet_another_hook|phorum_mod_foo_some_other_hook

priority: run some_hook before some_other_module

*/

function phorum_mod_foo_some_hook ($data) {
// Do stuff for "some_hook".
return $data;

}

function phorum_mod_foo_some_other_hook ($data) {
// Do stuff for "some_other_hook" and "yet_another_hook".
return $data;

}

?>

Installation of a single file module is done by putting the PHP file (e.g. mod_foo.
php) directly in the directory {phorumdir}/mods/ and activating the module from

24

the "Modules" screen in your admin interface.

2.3.3.3 Multiple file modules

These modules are useful in case you need additional files to be stored with your mod-
ule, for example a settings screen, language files or custom images.

They are stored in their own subdirectory below the directory {phorumdir}/
mods/. If you have a module named "foo", you will have to create a directory
{phorumdir}/mods/foo/ for storing all module files.

Inside this subdirectory, you will have to create a least two files:

• A file called info.txt. This file contains the module information for your
module (see Section 2.3.2).

• The PHP file which contains the hook function definitions for your module. The
basename of this file should be the same as the name of the module subdirectory.
So for our example module "foo", you will have to create a file named foo.php.

Using the example module info from Example 2.3.1, the complete multiple file
module would look like this (see XXX why we use the check on PHORUM at the start
of the PHP file):

25

Example 2.3.3 Multi file module

{phorum dir}/mods/foo/info.txt
title: Foo
desc: This is the Foo module for Phorum. Nothing exciting...
version: 1.0.2
release_date: Jan 1st, 2008
url: http://www.phorum.org
author: John Doe <johndoe@example.com>
require_version: 5.2.2
category: user_features

hook: some_hook|phorum_mod_foo_some_hook
hook: some_other_hook|phorum_mod_foo_some_other_hook
hook: yet_another_hook|phorum_mod_foo_some_other_hook

priority: run some_hook before some_other_module

{phorum dir}/mods/foo/foo.php
<?php

if(!defined("PHORUM")) return;

function phorum_mod_foo_some_hook ($data) {
// Do stuff for "some_hook".
return $data;

}

function phorum_mod_foo_some_other_hook ($data) {
// Do stuff for "some_other_hook" and "yet_another_hook".
return $data;

}

?>

So far, the module has exactly same functionality as the single file module from
Section 2.3.3.2. From here on, the functionality can be extended. Some of the possi-
bilities are:

• Using custom files for your module (images, classes, libs, etc.);

• Letting your module support multiple languages. (See XXX about creation of
language files)

• Creating a settings screen for your module; (See XXX about creation of settings
screens)

• Adding template files for your module; (See XXX about module template files)

26

2.3.4 Supporting multiple languages
This feature is supported by the Section 2.3.3.3.

If your module includes text that will be displayed to end users, you should strongly
consider making it support multiple languages. This will allow Phorum installations
that use a different language(s) to display output of your module in the same lan-
guage(s), instead of the language you have written the module in.

For supporting multiple languages, the first thing to do is add the following line to
your module information file info.txt:

hook: lang|

There is no actual hook function configured here, because the "lang" hook is only used
as a marker for Phorum. It tells Phorum that your module supports multiple languages.

Next, you must provide at least one language file with your module. Language files
are stored in a subdirectory name "lang" inside your module directory. In our sample
module, the full directory would be {phorumdir}/mods/foo/lang/. The lan-
guage files must be named identical to the main language files that Phorum uses. To
include both English and French, your module would require the following file struc-
ture:

{phorum dir}/
|
+-- mods/

|
+-- foo/

|
+-- info.txt
|
+-- foo.php
|
+-- lang/

|
+-- english.php
|
+-- french.php

The structure of your language files will be almost identical to that of the main Phorum
language files. However, for your own language files it is advisable to add an extra level
in the language variables, to avoid conflicts with language string from other modules
or Phorum itself. Here is an example of how you could do that:

<?php
$PHORUM["DATA"]["LANG"]["mod_foo"] = array(

"Hello" => "Hello!",
"Bye" => "Good bye!"

);
?>

Here, the extra inserted level is ["mod_foo"]. To access the "Hello" string from
your module code you would use the PHP variable:

27

$PHORUM["DATA"]["LANG"]["mod_foo"]["Hello"]

When you want to use the language string from a template file, the you would use the
following Section 1.4.3.4:

{LANG->mod_foo->Hello}

In case a Phorum installation is using a language that your module does not support,
Phorum will automatically attempt to fallback to English. So it is highly recommend
that you include an english.php language file in all your modules. If both the
current language and English are not found, Phorum will be unable to load a language
for your module and will display empty space instead of your language strings.

Always try to reuse strings that are already in the main Phorum language files itself.
Only create custom strings when there is no alternative available. Having more text to
translate is more work for translators and using core language strings helps in keeping
the used terminology consistent.

2.3.5 Module data storage
2.3.5.1 Introduction

Sometimes, modules will have to store some data in the Phorum system. For example
an avatar module would have to store what avatar a user want to show and a poll module
would have to add the question, answers and voting results for a poll to messages in
which a poll is added.

This section description what standard methods are available for letting modules
store their data in the Phorum system. Of course, as a module writer, you can divert
from this and use any kind of storage that you like. You are in no way limited to only
use Phorum specific methods here.

2.3.5.2 Storing data for messages

If your module needs to store data along with a Phorum message, the easiest way is to
make use of the meta information array that is attached to each message array ($me-
ssage["meta"]). This array is a regular PHP array, which is stored in the database
as serialized data (see PHP’s serialize manual). Because Phorum and other modules
make use of this meta data as well, you should never squash it, neither access the meta
data in the database directly. Instead use the methods described in this section.

To prevent name space collissions with other modules or Phorum, it is good practice
to create only one key in the meta data array named mod_<yourmodule> (in our
example: mod_foo). If your module needs to store only one single value, then put it
directly under this key:

$message["meta"]["mod_foo"] = "the single value";

If multiple values need to be stored, then put an array under the key. This array can be
as complicated as you like:

28

http://www.php.net/serialize

$message["meta"]["mod_foo"] = array(
"key1" => "value1",
"key2" => "value2",
"complex" => array(

0 => "what",
1 => "a",
2 => "cool",
3 => "module"

)
);

because the meta data is stored as serialized data in the database, it is not possible
to handle the data you store in there through SQL queries.

When storing information in the meta data from a hook function, you can encounter
two different situations, which both need a different way of handling: hooks that get
an editable message array as their argument and hooks that don’t.

2.3.5.2.1 From hooks that get an editable message array as their argument
There are some hooks that send a full message structure to the hook functions. These
can change the message structure before returning it to Phorum. Examples are the
hooks "[?]" and "[?]". For these kind of hooks, you can update the meta information in
the message structure and be done with it. Here’s an example of what this could look
like in your hook function:

function phorum_mod_foo_before_post ($message)
{

// Make sure that we have an array for mod_foo in the ←↩
meta data.

if (!isset($message["meta"]["mod_foo"]) ||
!is_array($message["meta"]["mod_foo"])) {
$message["meta"]["mod_foo"]["foodata"] = array();

}

// Add some fields to the mod_foo data.
$message["meta"]["mod_foo"]["foodata"] = "Some data";
$message["meta"]["mod_foo"]["bardata"] = "Some more data ←↩

";

// Return the updated message. Phorum will take care of
// storing the "mod_foo" array in the database.
return $message;

}

2.3.5.2.2 From other hooks For other hooks, the proper way to store information
in the meta data is to first retrieve the current message data (including the current meta
data) using the phorum_db_get_message() function. After this, merge the information
for your module with the existing meta data and store the updated data in the database

29

 If you see ??? below at the places where you are supposed to see hook docs, then it is because the hook docs for "before_post" and "before_edit" have not yet been written.

using the phorum_db_update_message() function. Here is an example of what this
could look like in your hook function:

function phorum_mod_foo_some_hook ($data)
{

// Somehow you get the id for the message. Here we asume
// that it is stored in the $data hook parameter.
$message_id = $data["message_id"];

// Retrieve the message from the database.
$message = phorum_db_get_message ($message_id);

// Extract the current meta data.
$meta = $message[’meta’];

// Make sure that we have an array for mod_foo in the ←↩
meta data.

if (!isset($meta["mod_foo"]) || !is_array($meta["mod_foo ←↩
"])) {
$meta["mod_foo"]["foodata"] = array();

}

// Add some fields to the mod_foo data.
$meta["mod_foo"]["foodata"] = "Some data";
$meta["mod_foo"]["bardata"] = "Some more data";

// Store the updated meta data in the database.
phorum_db_update_message($message_id, array("meta" => ←↩

$meta));

// Return the data that we got as input for this hook ←↩
function.

return $data;
}

Changing meta data for a message this way will ensure that the existing meta data is
kept intact.

30

Chapter 3

Module hooks

3.1 Introduction
To satisfy the webmaster that needs every bell and whistle, or those that want to make
their web site unique, the Phorum team created a very flexible hook & module system.
The hooks allow a webmaster to create modules for doing things like using external
authentication, altering message data before it is stored, adding custom information
about users or messages, ec. Almost anything you can think of can be implemented
through the hook & module system.

This chapter describes all the hooks that are available within the Phorum code. It
is mainly targeted at developers that want to write modules.

3.2 Templating

3.2.1 css_register
Modules can provide extra CSS data for CSS code that is retrieved through the css.php
script. Extra CSS definitions can be added to the start and to the end of the base CSS
code. Modules that make use of this facility should register the additional CSS code
using this hook.

Call time:
At the start of the css.php script.
Hook input:

An array, containing the following fields:

• css
The name of the css file that was requested for the css.php script. Phorum re-
quests either "css" or "css_print". The module can use this parameter to decide
whether CSS code has to be registered or not.

• register
An array of registrations, filled by the modules. Modules can register their CSS

31

code for inclusion in the base CSS file by adding a registration to this array. A
registration is an array, containing the following fields:

– module
The name of the module that adds the registration.

– where
This field determines whether the CSS data is added before or after the base
CSS code. The value for this field is either "before" or "after".

– source
Specifies the source of the CSS data. This can be one of:

∗ file(<path to filename>)
For including a static CSS file. The path should be absolute or rela-
tive to the Phorum install directory, e.g. "file(mods/foobar/baz.css)".
Because this file is loaded using a PHP include() call, it is possible to
include PHP code in this file. Mind that this code is stored interpreted
in the cache.

∗ template(<template name>)
For including a Phorum template, e.g. "template(foobar::baz)"

∗ function(<function name>)
For calling a function to retrieve the CSS code, e.g. "function(mod_foobar_get_css)"

– cache_key
To make caching of the generated CSS data possible, the module should
provide the css.php script a cache key using this field. This cache key
needs to change if the module will provide different CSS data.

Note: in case "file" or "template" is used as the source, you are allowed
to omit the cache_key. In that case, the modification time of the involved
file(s) will be used as the cache key.

It is okay for the module to provide multiple cache keys for different situa-
tions (e.g. if the CSS code depends on a group or so). Keep in mind though
that for each different cache key, a separate cache file is generated. If you
are generating different CSS code per user or so, then it might be better to
add the CSS code differently (e.g. through a custom CSS generating script
or by adding the CSS code to the $PHORUM[’DATA’][’HEAD_DATA’]
variable. Also, do not use this to only add CSS code to certain phorum
pages. Since the resulting CSS data is cached, it is no problem if you add
the CSS data for your module to the CSS code for every page.

Hook output:
The same array as the one that was used for the hook call arguments, possibly with

the "register" field updated. A module can add multiple registrations to the register
array.

32

3.2.2 javascript_register
Modules can provide JavaScript code that has to be added to the Phorum pages. Mod-
ules that make use of this facility should register the JavaScript code using this hook.

Call time:
At the start of the javascript.php script.
Hook input:

An array of registrations. Modules can register their JavaScript code for inclusion
by adding a registration to this array. A registration is an array, containing the following
fields:

• module
The name of the module that adds the registration.

• source
Specifies the source of the JavaScript data. This can be one of:

– file(<path to filename>)
For including a static JavaScript file. The path should be absolute or relative
to the Phorum install directory, e.g. "file(mods/foobar/baz.js)". Because
this file is loaded using a PHP include() call, it is possible to include PHP
code in this file. Mind that this code is stored interpreted in the cache.

– template(<template name>)
For including a Phorum template, e.g. "template(foobar::baz)"

– function(<function name>)
For calling a function to retrieve the JavaScript code, e.g. "function(mod_foobar_get_js)"

• cache_key
To make caching of the generated JavaScript code possible, the module should
provide a cache key using this field. This cache key needs to change if the mod-
ule will provide different JavaScript code.

Note: in case "file" or "template" is used as the source, you are allowed to omit
the cache_key. In that case, the modification time of the involved file(s) will be
used as the cache key.

It is okay for the module to provide multiple cache keys for different situations
(e.g. if the JavaScript code depends on a group). Keep in mind though that for
each different cache key, a separate cache file is generated. If you are generat-
ing different JavaScript code per user or so, then it might be better to add the
JavaScript code differently (e.g. through a custom JavaScript generating script
or by adding the code to the $PHORUM[’DATA’][’HEAD_DATA’] variable).
Also, do not use this to only add JavaScript code to certain phorum pages. Since
the resulting JavaScript data is cached, it is no problem if you add the JavaScript
code for your module to the code for every page.

Hook output:

33

The same array as the one that was used as the hook call argument, possibly ex-
tended with one or more registrations.

3.3 Control center

3.3.1 cc_panel
This hook can be used to implement an extra control center panel or to override an
existing panel if you like.

Call time:
Right before loading a standard panel’s include file.
Hook input:

An array containing the following fields:

• panel: the name of the panel that has to be loaded. The module will have to
check this field to see if it should handle the panel or not.

• template: the name of the template that has to be loaded. This field should be
filled by the module if it wants to load a specific template.

• handled: if a module does handle the panel, then it can set this field to a true
value, to prevent Phorum from running the standard panel code.

• error: modules can fill this field with an error message to show.

• okmsg: modules can fill this field with an ok message to show.

Hook output:
The same array as the one that was used for the hook call argument, possibly with

the "template", "handled", "error" and "okmsg" fields updated in it.

3.4 Message search

3.4.1 search_redirect
Phorum does not jump to the search results page directly after posting the search form.
Instead, it will first do a redirect to a secondary URL. This system is used, so Phorum
can show an intermediate "Please wait while searching" page before doing the redirect.
This is useful in case searching is taking a while, in which case users might otherwise
repeatedly start hitting the search button when results don’t show up immediately.

This hook can be used to modify the parameters that are used for building the redi-
rect URL. This can be useful in case a search page is implemented that uses more
fields than the standard search page.

Call time:
Right before the primary search redirect (for showing the "Please wait while search-

ing" intermediate page) is done.

34

Hook input:
An array of phorum_get_url() parameters that will be used for building the redirect

URL.
Hook output:

The possibly updated array of parameters.

3.4.2 search_output
This hook can be used to override the standard output for the search page. This can be
useful for search modules that implement a different search backend which does not
support the same options as Phorum’s standard search backend.

Call time:
At the end of the search script, just before it loads the output template.
Hook input:

The name of the template to use for displaying the search page, which is "search"
by default.

Hook output:
The possibly updated template name to load or NULL if the module handled the

output on its own already.

3.5 File storage

3.5.1 file_purge_stale
This hook can be used to feed the file storage API function phorum_api_file_purge_stale()
extra stale files. This can be useful for modules that handle their own files, using a cus-
tom link type.

Call time:
Right after Phorum created its own list of stale files.
Hook input:

An array containing stale files, indexed by file_id. Each item in this array is an
array on its own, containing the following fields:

• file_id: the file id of the stale file

• filename: the name of the stale file

• filesize: the size of the file in bytes

• add_datetime: the time (epoch) at which the file was added

• reason: the reason why it’s a stale file

Hook output:
The same array as the one that was used for the hook call argument, possibly ex-

tended with extra files that are considered to be stale.

35

3.6 User data handling

3.6.1 user_save
This hook can be used to handle the data that is going to be stored in the database for
a user. Modules can do some last minute change on the data or keep some external
system in sync with the Phorum user data. In combination with the [user_get] hook,
this hook can also be used to store and retrieve some of the Phorum user fields using
some external system.

Call time:
Just before user data is stored in the database.
Hook input:

An array containing user data that will be sent to the database.
Hook output:

The same array as the one that was used for the hook call argument, possibly with
some updated fields in it.

3.6.2 user_register
This hook is called when a user registration is completed by setting the status for the
user to PHORUM_USER_ACTIVE. This hook will not be called right after filling in
the registration form (unless of course, the registration has been setup to require no
verification at all in which case the user becomes active right away).

Call time:
Right after a new user registration becomes active.
Hook input:

An array containing user data for the registered user.
Hook output:

The same array as the one that was used for the hook call argument, possibly with
some updated fields in it.

3.6.3 user_get
This hook can be used to handle the data that was retrieved from the database for a
user. Modules can add and modify the user data. In combination with the [user_save]
hook, this hook can also be used to store and retrieve some of the Phorum user fields
in some external system

Call time:
Just after user data has been retrieved from the database.
Hook input:

An array of users. Each item in this array is an array containing data for a single
user.

Hook output:
The same array as the one that was used for the hook call argument, possibly with

some updated fields in it.

36

3.6.4 user_list
This hook can be used for reformatting the list of users that is returned by the pho-
rum_api_user_list() function. Reformatting could mean things like changing the sort
order or modifying the fields in the user arrays.

Call time:
Each time the phorum_api_user_list() function is called. The core Phorum code

calls the function for creating user drop down lists (if those are enabled in the Pho-
rum general settings) for the group moderation interface in the control center and for
sending private messages.

Hook input:
An array of user info arrays. Each user info array contains the fields "user_id",

"username" and "display_name". The hook function is allowed to update the "user-
name" and "display_name" fields.

Hook output:
The same array as was used for the hook call argument, possibly with some updated

fields in it.

3.6.5 user_delete
Modules can use this hook to run some additional user cleanup tasks or or to keep some
external system in sync with the Phorum user data.

Call time:
Just before a user is deleted.
Hook input:

The user_id of the user that will be deleted.
Hook output:

The same user_id as the one that was used for the hook call argument.

3.7 User authentication and session handling

3.7.1 user_authenticate
This hooks gives modules a chance to handle the user authentication (for example to
authenticate against an external source like an LDAP server).

Call time:
Just before Phorum runs its own user authentication.
Hook input:

An array containing the following fields:

• type: either PHORUM_FORUM_SESSION or PHORUM_ADMIN_SESSION;

• username: the username of the user to authenticate;

• password: the password of the user to authenticate;

• user_id: Always NULL on input. This field implements the authentication state.

37

Hook output:
The same array as the one that was used for the hook call argument, possibly with

the user_id field updated. This field can be set to one of the following values by a
module:

• NULL: let Phorum handle the authentication

• FALSE: the authentication credentials are rejected

• 1234: the numerical user_id of the authenticated user

38

	Templates
	Introduction
	Template structure
	How to start your own template
	The Phorum template language
	Introduction
	General syntax
	Data types
	Integers
	Strings
	PHP constants
	Template variables

	Statements
	Display a variable
	In line comments
	DEFINE
	VAR
	IF .. ELSEIF .. ELSE ..
	LOOP
	INCLUDE
	HOOK

	Need the power of PHP?

	Modules
	Introduction
	Terminology
	Modules
	Hacks
	Hooks
	Hook functions

	Writing your own modules
	Introduction
	Module information
	Module file structure
	Introduction
	Single file modules
	Multiple file modules

	Supporting multiple languages
	Module data storage
	Introduction
	Storing data for messages
	 From hooks that get an editable message array as their argument
	From other hooks

	Module hooks
	Introduction
	Templating
	css_register
	javascript_register

	Control center
	cc_panel

	Message search
	search_redirect
	search_output

	File storage
	file_purge_stale

	User data handling
	user_save
	user_register
	user_get
	user_list
	user_delete

	User authentication and session handling
	user_authenticate

